26 research outputs found

    The Budget-Constrained Functional Dependency

    Full text link
    Armstrong's axioms of functional dependency form a well-known logical system that captures properties of functional dependencies between sets of database attributes. This article assumes that there are costs associated with attributes and proposes an extension of Armstrong's system for reasoning about budget-constrained functional dependencies in such a setting. The main technical result of this article is the completeness theorem for the proposed logical system. Although the proposed axioms are obtained by just adding cost subscript to the original Armstrong's axioms, the proof of the completeness for the proposed system is significantly more complicated than that for the Armstrong's system

    Pressure-induced magnetic collapse and metallization of TlFe1.6Se2\mathrm{TlF}{\mathrm{e}}_{1.6}\mathrm{S}{\mathrm{e}}_{2}

    Full text link
    The crystal structure, magnetic ordering, and electrical resistivity of TlFe1.6Se2 were studied at high pressures. Below ~7 GPa, TlFe1.6Se2 is an antiferromagnetically ordered semiconductor with a ThCr2Si2-type structure. The insulator-to-metal transformation observed at a pressure of ~ 7 GPa is accompanied by a loss of magnetic ordering and an isostructural phase transition. In the pressure range ~ 7.5 - 11 GPa a remarkable downturn in resistivity, which resembles a superconducting transition, is observed below 15 K. We discuss this feature as the possible onset of superconductivity originating from a phase separation in a small fraction of the sample in the vicinity of the magnetic transition.Comment: 12 pages, 5 figure

    Pressure-induced superconductivity and topological quantum phase transitions in a quasi-one-dimensional topological insulator: Bi4I4

    Get PDF
    Superconductivity and topological quantum states are two frontier fields of research in modern condensed matter physics. The realization of superconductivity in topological materials is highly desired, however, superconductivity in such materials is typically limited to two- or three-dimensional materials and is far from being thoroughly investigated. In this work, we boost the electronic properties of the quasi-one-dimensional topological insulator bismuth iodide \b{eta}-Bi4I4 by applying high pressure. Superconductivity is observed in \b{eta}-Bi4I4 for pressures where the temperature dependence of the resistivity changes from a semiconducting-like behavior to that of a normal metal. The superconducting transition temperature Tc increases with applied pressure and reaches a maximum value of 6 K at 23 GPa, followed by a slow decrease. Our theoretical calculations suggest the presence of multiple pressure-induced topological quantum phase transitions as well as a structural-electronic instability.Comment: 22 pages, 4 figures, submitted to journa

    The Unique Origin of Colors of Armchair Carbon Nanotubes

    Full text link
    The colors of suspended metallic colloidal particles are determined by their size-dependent plasma resonance, while those of semiconducting colloidal particles are determined by their size-dependent band gap. Here, we present a novel case for armchair carbon nanotubes, suspended in aqueous medium, for which the color depends on their size-dependent excitonic resonance, even though the individual particles are metallic. We observe distinct colors of a series of armchair-enriched nanotube suspensions, highlighting the unique coloration mechanism of these one-dimensional metals.Comment: 4 pages, 3 figure

    Superconductivity in Weyl Semimetal Candidate MoTe2

    Get PDF
    In recent years, layered transition-metal dichalcogenides (TMDs) have attracted considerable attention because of their rich physics; for example, these materials exhibit superconductivity, charge density waves, and the valley Hall effect. As a result, TMDs have promising potential applications in electronics, catalysis, and spintronics. Despite the fact that the majority of related research focuses on semiconducting TMDs (e.g., MoS2), the characteristics of WTe2 are provoking strong interest in semimetallic TMDs with extremely large magnetoresistance, pressure-driven superconductivity, and the predicted Weyl semimetal (WSM) state. In this work, we investigate the sister compound of WTe2, MoTe2, which is also predicted to be a WSM and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that MoTe2 exhibits superconductivity with a resistive transition temperature Tc of 0.1 K. The application of a small pressure (such as 0.4 GPa) is shown to dramatically enhance the Tc, with a maximum value of 8.2 K being obtained at 11.7 GPa (a more than 80-fold increase in Tc). This yields a dome-shaped superconducting phase diagram. Further explorations into the nature of the superconductivity in this system may provide insights into the interplay between strong correlations and topological physics.Comment: 20 pages, 5 figure

    A modal logic for reasoning about economic policies

    No full text
    The article introduces a modal logic for reasoning about combined effect of economic policies imposed on a group of rational agents. Modalities in this language are labelled by policies applied to the players in a strategic game. The resulting logical system allows to reason about properties that are true in all Nash equilibria of the game modified by a specific policy. The main technical result is the completeness theorem for the proposed logical system.</p

    Knowledge in communication networks

    No full text
    The article investigates epistemic properties of information flow under communication protocols with a given topological structure of the communication network. The main result is a sound and complete logical system that describes all such properties. The system consists of a variation of the multi-agent epistemic logic S5 extended by a new network-specific Gateway axiom

    A modal logic for reasoning about economic policies

    No full text
    corecore